Relationship between Crystal Structure and Electrical Properties of Nd(Cr_{1-x}Fe_x)O₃

Hideki Taguchi

Research Laboratory for Surface Science, Faculty of Science, Okayama University, Okayama 700, Japan

Received July 26, 1996; in revised form December 24, 1996; accepted February 18, 1997

Perovskite-type Nd(Cr_{1-x}Fe_x)O₃ was synthesized in the range $0.0 \le x \le 1.0$, and has the orthorhombic GdFeO₃-type structure with space group *Pnma*. The increase of the (Cr, Fe)–O distance and the effective magnetic moment (μ_{eff}) indicates that the Fe³⁺ ion is in the high-spin state with the $(d\epsilon)^3(d\gamma)^2$ electronic configuration. Rietveld analysis indicates that the increase of the (Cr, Fe)–O distance and the decrease of the angles for (Cr, Fe)–O(1 and 2)–(Cr, Fe) make π -bonding decrease. From the electrical resistivity (ρ) measurement, Nd(Cr_{1-x}Fe_x)O₃ is a semiconductor with activation energy (E_a) $\approx 0.16-\approx 0.89$ eV. The temperature independence of the Seebeck coefficient (α) indicates that the mobility (μ) decreases with increasing *x*. © 1997 Academic Press

INTRODUCTION

NdCrO₃ has an orthorhombic perovskite-type structure with a = 0.5430 nm, b = 0.7692 nm, and c = 0.5488 nm, and exhibits antiferromagnetism with a Néel temperature (T_N) of 224 K (1, 2). The magnetic susceptibility indicates that the electronic configuration of a Cr^{3+} ion is $(d\varepsilon)^3(d\gamma)^0$. NdCrO₃ exhibits p-type semiconducting behavior above room temperature (2). The activation energy (E_a) calculated from the linear portion of the log ρ -1000/T curve is $\approx 0.28 \text{ eV}$ (3). Rao et al. reported that orthorhombic perovskite-type $LaCrO_3$ is a *p*-type semiconductor, and three 3*d* electrons of the Cr³⁺ ion are all localized and the Fermi level lies between the t_{2g}^* level and narrow e_g^* levels (4). Since the ionic radius and the electronegativity of a La³⁺ ion are nearly equal to those of a Nd^{3+} ion, the band structure of $NdCrO_3$ is considered to resemble the band structure of LaCrO₃ (5, 6).

Taguchi (7,8) investigated the relationship between the crystal structure and the electrical properties of Nd(Cr_{1-x} Mn_x)O₃ and Nd(Cr_{1-x}Co_x)O₃. Nd(Cr_{1-x}Mn_x)O₃ is the *p*-type semiconductor and has maximum activation energy (*E*_a) at x = 0.2. The (Cr, Mn)–O distance and the effective magnetic moment (μ_{eff}) indicate that the spin state of the Mn³⁺ ion is high. Nd(Cr_{1-x}Co_x)O₃ is the *p*-type semiconductor with *E*_a = $\approx 0.18 - \approx 0.24$ eV. The decrease of the

(Cr, Co)-O distance and the effective magnetic moment (μ_{eff}) indicates that the Co³⁺ ion is in the low-spin state with the $(d\varepsilon)^6 (d\gamma)^0$ at low temperature. The $1/\chi - T$ curve exhibits a plateau with increasing temperature, and this plateau indicates the temperature interval where there is a conversion from the low-spin state of the Co³⁺ ion to a mixed spin state.

NdFeO₃ also has the orthorhombic perovskite-type structure with a = 0.5450 nm, b = 0.7761 nm, and c = 0.5587 nm (9), and exhibits weak ferromagnetism with a Curie temperature (T_c) of 693 K (10). Koehler *et al.* performed the neutron diffraction measurement of NdFeO₃ to investigate the magnetic properties (9). The magnitude of the ordered iron moment at temperature saturation is 4.57 Bohr magneton in NdFeO₃. Eibschütz *et al.* performed differential thermal analysis (DTA) and measured Mössbauer spectra of $LnFeO_3$ (Ln = La-Lu) (10). The quadrupole splitting, isomer shift, Curie temperature, and internal field vary greatly.

The electrical conductivity of NdCrO₃ is considered to be produced by the thermal excitation of the 3*d* electrons from the localized t_{2g}^* level to the narrow e_g^* orbital. If there are more than three 3*d* electrons and the excess 3*d* electrons exist in the narrow e_g^* orbital, it is assumed that the electrical conductivity may increase with increasing *x*. Magnetic measurement indicates that the Fe³⁺ ion in NdFeO₃ has five 3*d* electrons (9). In the present study, Nd(Cr_{1-x}Fe_x)O₃ ($0.0 \le x \le 1.0$) was synthesized to refine its structure, and the electrical resistivity, Seebeck coefficient, and magnetic properties were measured. These results will provide information regarding the cation–anion–cation overlap in perovskite-type Nd(Cr_{1-x}Fe_x)O₃.

EXPERIMENTAL

Nd($Cr_{1-x}Fe_x$)O₃ (0.0 $\le x \le 1.0$) was prepared by a standard ceramic technique. Dried Nd₂O₃, Cr_2O_3 , and Fe₂O₃ powders were weighed in appropriate proportions and milled for a few hours with acetone. After the mixed powders were dried at 373 K, they were calcined at 1173 K for a few hours in air and then fired at 1573 K for 24 h in a flow of pure oxygen gas. In order to measure the electrical properties, the powders were pressed into a pellet form under a pressure of 50 MPa, and the pellet was sintered at 1573 K for 12 h in a flow of pure oxygen gas.

The phases of the samples were identified by X-ray powder diffraction (XRD) with monochromatic CuK α radiation. The cell constants of the samples were determined from high-angle reflections with Si as an external standard. The structure refinement was carried out by Rietveld analysis of the XRD data with the RIETAN program written by Izumi (11). XRD data were collected by step scanning over the angular range $20^{\circ} \le 2\theta \le 100^{\circ}$ in increments of 0.02° (2θ) with monochromatic CuK α radiation.

The electrical resistivity (ρ) of the samples was measured by a standard four-electrode technique in the temperature range $300 \le T \le 1000$ K. The Seebeck coefficient (α) was measured in the temperature range $400 \le T \le 1000$ K, with a heating rate of 2 K/min. The magnetic susceptibility (χ) was measured with a magnetic torsion balance in the temperature range $300 \text{ K} \le T \le 773 \text{ K}$. Differential thermal analysis (DTA) and thermal gravity (TG) were performed in the temperature range $300 \le T \le 873$ K.

RESULTS AND DISCUSSION

XRD patterns of Nd($Cr_{1-x}Fe_x$)O₃ ($0.0 \le x \le 1.0$) were completely indexed as the orthorhombic perovskite-type structure. The relationship between the cell constants (*a*, *b*, and *c* axes) and the composition is shown in Fig. 1. The cell constants increase linearly with increasing *x*. The observed cell constants of NdFeO₃ (x = 1.0) agree with the cell constant reported by Koehler *et al.* (9). The ionic radii of a Cr³⁺ ion, an Fe³⁺ ion (low-spin state), and the Fe³⁺ ion (highspin state) with a coordination number (CN) of 6 are 0.0615, 0.0550, and 0.0645 nm, respectively (12). The increase of the cell constants is explained by the difference in ionic radius between the Cr^{3+} and Fe^{3+} ions. The Fe^{3+} ions must be in the high-spin state with the $(d\varepsilon)^3(d\gamma)^2$ electronic configuration.

The structure refinement of Nd($Cr_{1-x}Fe_x$)O₃ (0.0 $\le x \le 1.0$) was carried out by Rietveld analysis of XRD data. Both Nd($Cr_{1-x}Mn_x$)O₃ and Nd($Cr_{1-x}Co_x$)O₃ have the orthorhombic GdFeO₃-type structure with space group *Pnma* (7,8). In the present study, it can be concluded that Nd($Cr_{1-x}Fe_x$)O₃ has the same structure with space group *Pnma* (13). Isotropic thermal parameters (B) for Nd, Cr, Fe, O(1), and O(2) ions were fixed at 0.003 nm² for all samples. Refined structural parameters and residuals, R_{WP} , R_1 , and R_F , are listed in Table 1 (R_{WP} , R_I , and R_F are the weighted pattern, the integrated intensity, and the structure factor, respectively). The final R_F of all samples is less than 1.63%, and the low R_F suggests that the structural model for Nd($Cr_{1-x}Fe_x$)O₃ is reasonable.

In an orthorhombic GdFeO₃-type structure, A-site cations (Nd ions) coordinate with twelve anions: four O(1) and eight O(2) ions. B-site cations (Cr and Fe ions) coordinate with six anions: two O(1) and four O(2) ions. Table 2 shows the (Cr, Fe)–O distance of Nd(Cr_{1-x}Fe_x)O₃ calculated from the refined structural parameters. The (Cr, Fe)–O(1 and 2) distances increase with x. The angles for O(1)–(Cr, Fe)–O(1), O(1)–(Cr, Fe)–O(2), and O(2)–(Cr, Fe)–O(2) are 180°, 90°, and 90° or 180°, respectively. Table 3 shows the angle for (Cr, Fe)–O(1 and 2)–(Cr, Fe) calculated from the refined structure. The angles for (Cr, Fe)–O(1 and 2)–(Cr, Fe) are less than 180° and decrease with increasing x.

Figure 2 shows the relationship between the inverse magnetic susceptibility $(1/\chi)$ of Nd(Cr_{1-x}Fe_x)O₃ (0.0 $\leq x \leq 1.0$)

FIG. 1. Cell constants vs composition (x) for the system $Nd(Cr_{1-x}Fe_x)O_3$.

 TABLE 1

 Refined Structure Parameters for Nd(Cr_{1-x}Fe_x)O₃

x = 0.0	a = 0.5479	8(1) nm b =	0.76918(2) nr	n $c = 0.5422$	1(1) nm
	$R_{\rm WP} = 12.0$	$K_{\rm I} = \frac{1}{2} $	= 2.01%	$R_{\rm F} = 1.29$	/o
Atom	Position	x	У	Ζ	В
Nd	4(c)	0.041(1)	0.25	-0.008(1)	0.003
Cr	4(b)	0	0	0.5	0.003
O(1)	4(c)	0.484(4)	0.25	0.082(6)	0.003
O(2)	8(d)	0.292(4)	0.041(3)	-0.289(4)	0.003
0(2)	0(4)	01232(1)	01011(0)	0.207(1)	0.002
x = 0.2	a = 0.5503	9(1) nm b	= 0.77065(2)	nm $c = 0.54$	264(1) nm
	$R_{\rm WP} = 11.0$	63% K	$R_{I} = 1.52\%$	$R_{\rm F} = 0.9$	5%
Atom	Position	x	у	Ζ	В
Nd	4(c)	0.043(1)	0.25	-0.008(1)	0.003
Cr. Fe	4(b)	0	0	0.5	0.003
O(1)	4(c)	0.483(4)	0.25	0.090(5)	0.003
O(2)	8(d)	0.403(4) 0.293(3)	0.040(3)	-0.291(3)	0.003
0(2)	0(u)	0.275(5)	0.040(5)	= 0.291(3)	0.005
x = 0.4	$a = 0.5525^{\circ}$	7(1) nm b =	= 0.77216(2) n	m $c = 0.543$	329(1) nm
	$R_{\rm WP} = 12.3$	4% $R_{\rm I}$	= 2.35%	$R_{\rm F} = 1.6$	3%
Atom	Position	x	У	Ζ	В
Nd	4(c)	0.045(1)	0.25	-0.009(1)	0.003
Cr. Fe	4(b)	0	0	0.5	0.003
O(1)	A(c)	0.481(4)	0.25	0.089(5)	0.003
O(1)	4(C) 8(d)	0.401(4)	0.23	0.000(3)	0.003
0(2)	8(u)	0.292(3)	0.040(3)	-0.292(3)	0.005
x = 0.6	a = 0.5547	75(1) nm b	= 0.77357(1)	nm $c = 0.54$	390(1) nm
	$R_{\rm uv} = 11$	46% <i>B</i>	$R_{\rm r} = 1.54\%$	$R_{\rm T} = 1.1$	0%
Atom	Position	x	v	7 KF 1.1	B
			9	_	
Nd	4(c)	0.047(1)	0.25	-0.010(1)	0.003
Cr, Fe	4(b)	0	0	0.5	0.003
O(1)	4(c)	0.479(4)	0.25	0.092(5)	0.003
O(2)	8(d)	0.294(3)	0.041(3)	-0.294(3)	0.003
- ()					
x = 0.8	a = 0.5568	2(1) nm b	= 0.77488(1)	nm $c = 0.54$	450(1) nm
	$R_{\rm WP} = 11.2$	29% R	$L_{\rm I} = 1.85\%$	$R_{\rm F} = 1.3$	32%
Atom	Position	x	y	Z	В
Nd	4(c)	0.048(1)	0.25	-0.010(1)	0.003
Cr, Fe	4(b)	0	0	0.5	0.003
O(1)	4(c)	0.476(4)	0.25	0.093(4)	0.003
O(2)	8(d)	0.294(3)	0.041(2)	-0.295(3)	0.003
		()			
x = 1.0	a = 0.5587	0(1) nm b	= 0.77610(1)	nm $c = 0.54$	505(1) nm
	$R_{\rm WP} = 12.9$	90% R	L = 2.21%	$R_{\rm F} = 1.6$	53%
Atom	Position	x	y y	Z	В
Nd	4(c)	0.049(1)	0.25	-0.011(1)	0.003
Fe	4(b)	0	0	0.5	0.003
O(1)	4(c)	0.474(5)	0.25	0.093(5)	0.003
O(2)	8(d)	0.288(4)	0.049(3)	-0.290(4)	0.003

and temperature. Nd(Cr_{1-x}Fe_x)O₃ ($0.0 \le x \le 0.6$) is paramagnetic in the temperature range 300 K $\le T \le 773$ K, while Nd(Cr_{1-x}Fe_x)O₃ ($0.8 \le x \le 1.0$) shows unusual behavior of the $1/\chi$ -T curves at ≈ 516 K for x = 0.8 and

TABLE 2 (Cr, Fe)–O Distance of $Nd(Cr_{1-x}Fe_x)O_3$

x	(Cr, Fe)–O(1) × 2 (nm)	(Cr, Fe)–O(2) \times 2 (nm)	(Cr, Fe)–O(2) \times 2 (nm)
0.0	0.1976(7)	0.1961(21)	0.1993(21)
0.2	0.1990(7)	0.1972(18)	0.1994(18)
0.4	0.1993(7)	0.1982(19)	0.1995(19)
0.6	0.2001(6)	0.1991(17)	0.2003(17)
0.8	0.2007(6)	0.1997(16)	0.2008(16)
1.0	0.2010(8)	0.2009(21)	0.2013(21)

 \approx 676 K for x = 1.0, respectively. The XRD pattern of the sample (x = 1.0) after the magnetic measurement was completely indexed as orthorhombic NdFeO₃. Although each peak became broad, no extra peak was detected at all. When a bar magnet was brought near the sample (x = 1.0) after the magnetic measurement, the sample was attracted to the bar magnet. This fact indicates that a very small quantity of iron oxides (Fe_2O_3 or Fe_3O_4) exists in the sample. The magnetic measurement was performed at pressure of ≈ 1 Pa; therefore, a very small amount of iron oxide (Fe₂O₃) or Fe₃O₄) was produced by the decomposition of the samples under low oxygen pressure. The unusual behavior in the $1/\chi$ -T curves of x = 0.8 and 1.0 is due to the appearance of iron oxides in the samples. The $1/\gamma - T$ curves obey the Curie–Weiss law at 300–500 K (x = 0.0), 300–520 K (x = 0.2), 300–570 K (x = 0.4), and 300–700 K (x = 0.6), respectively. The deviation of the $1/\chi - T$ curves from the Curie–Weiss law is observed above $\approx 500 \text{ K}$ (x = 0.0), 520 K (x = 0.2), and 570 K (x = 0.4). These temperatures are defined as $T_{\rm M}$, and are shown as the arrows in Fig. 2. The effective magnetic moment (μ_{eff}) was calculated from the region obeyed the Curie-Weiss law. Figure 3 shows the relationship between μ_{eff} of Nd(Cr_{1-x}Fe_x)O₃ and the composition. The theoretical μ_{eff} is calculated using the equation

$$\mu_{\rm eff} = \sqrt{(1-x)\mu_{\rm Cr^{3+}}^2 + x\mu_{\rm Fe^{3+}}^2 + \mu_{\rm Nd^{3+}}^2},$$
 (1)

where $\mu_{Cr^{3+}}$, $\mu_{Fe^{3+}}$, and $\mu_{Nd^{3+}}$ are the effective magnetic moments of the Cr^{3+} ion, the Fe^{3+} ion, and the Nd^{3+} ion,

TABLE 3(Cr, Fe)–O–(Cr, Fe) Angle (°) for Nd($Cr_{1-x}Fe_x$)O3

x	(Cr, Fe)–O(1)–(Cr, Fe)	(Cr, Fe)–O(2)–(Cr, Fe)
0.0	153.4(18)	154.2(11)
0.2	151.0(15)	154.0(9)
0.4	151.1(15)	154.0(10)
0.6	150.2(13)	153.1(9)
0.8	149.6(12)	152.9(8)
1.0	149.7(16)	152.0(10)

FIG.2. Inverse magnetic susceptibility $(1/\chi)$ vs temperature (T) for the system Nd(Cr_{1-x}Fe_x)O₃. Arrow indicates the temperature (T_M) that the $1/\chi$ -T curve deviates from the Curie–Weiss law.

respectively (7,8). From the values of the spectroscopic splitting factor (g) and total angular momentum (J) of the Nd³⁺ ion, $\mu_{Nd^{3+}}$ is calculated to be 3.62 (14). In Fig. 3, the broken lines [1] and [2] indicate the theoretical values calculated in cases of both the high-spin and low-spin states of the Fe³⁺ ion; the line [1] is the high-spin state with the $(d\epsilon)^3(d\gamma)^2$ configuration and the line [2] is the low-spin state

with the $(d\varepsilon)^5(d\gamma)^0$ configuration. According to Koehler *et al.*, the Fe³⁺ ion in NdFeO₃ (x = 1.0) is 4.75 μ_B and this value indicates that the Fe³⁺ ion is the high-spin state (9). From these results, it is obvious that the spin state of the Fe³⁺ ion in Nd(Cr_{1-x}Fe_x)O₃ ($0.0 \le x \le 1.0$) is high at room temperature.

Figure 4 shows the relationship between the logarithm of the electrical resistivity (log ρ) of Nd(Cr_{1-x}Fe_x)O₃ and the reciprocal temperature (1000/*T*). The decrease of log ρ with increasing temperature indicates that Nd(Cr_{1-x}Fe_x)O₃ is a semiconductor. The log ρ -1000/*T* curves are linear and have deflections at \approx 570 K (x = 0), 600 K (x = 0.2), and 640 K (x = 0.4). These temperatures are defined as $T_{\rm R}$, and

FIG. 3. Effective magnetic moment (μ_{eff}) vs composition (x) for the system Nd(Cr_{1-x}Fe_x)O₃. The broken lines [1] and [2] indicate the theoretical values calculated in cases of both the high-spin and low-spin states of the Fe³⁺ ion; the line [1] is the high-spin state with the $(d\epsilon)^3 (d\gamma)^2$ configuration and the line [2] is the low-spin state with the $(d\epsilon)^5 (d\gamma)^0$ configuration.

FIG. 4. Logarithm of the electrical resistivity (log ρ) vs 1000/T for the system Nd(Cr_{1-x}Fe_x)O₃. Arrow indicates the temperature (T_R) that the log ρ -1000/T curve has the deflection.

are shown as the arrows in Fig. 4. The activation energy (E_a) calculated from the linear portion of $\log \rho -1000/T$ curves is shown in Fig. 5. In the range $0.0 \le x \le 0.4$, two values of E_a are shown by the calculation below T_R and above T_R . These values increase from ≈ 0.16 (x = 0.0) or ≈ 0.20 eV (x = 0.0) to ≈ 0.89 eV (x = 1.0). It is apparent that T_R is nearly equal to T_M .

Figure 6 shows the relationship between the Seebeck coefficient (α) and temperature. In the temperature range $500 \le T \le 1000$, α is positive and independent of temper-

ature. Since the electrical resistivity of NdFeO₃ (x = 1.0) was very high, I could not obtain a reliable α below 780 K. At 800 K, α is $\approx 0.33 \pm 0.03 \text{ mV/K}$ for $0.0 \le x \le 0.6$, then decreases to $\approx 0.23 \text{ mV/K}$ for x = 0.8 and $\approx 0.10 \text{ mV/K}$ for x = 1.0. At $T_{\rm R}$, the change in the α -T curves was not detected. In the case of a broad-band semiconductor, α is generally given by

$$\alpha = \pm \frac{k}{e} \left(\frac{E_{\rm F}}{kT} + A \right),\tag{2}$$

where *e* is the electron charge, *k* is the Boltzmann constant, $E_{\rm F}$ is the Fermi energy, and *A* is a dimensionless constant depending on the details of the scattering mechanism (15). Equation (2) indicates that α shows a strong temperature dependence. However, the result in Fig. 6 is independent of temperature. For the explanation of the temperature independence of α , under the assumption that all other interaction effect are negligible, Tuller and Nowick proposed the equation

$$\alpha = \pm \frac{k}{e} \left\{ \ln \beta \left(\frac{1-c}{c} \right) + \frac{S_{\rm T}^*}{k} \right\}$$
(3)

for a hopping mechanism involving a fixed number of carriers (16). Here S_T^* is the vibration entropy and is small enough to be negligible. β is a degeneracy factor; for the case of $\beta = 1$, Eq. (3) is often referred to as the "Heikes formula" (16). *c* is the fraction of sites which contain an electron,

$$C = \frac{n}{N},\tag{4}$$

where n is the number of electrons and N is the number of available sites per unit volume (V). By substituting Eq. (4)

FIG. 6. Seebeck coefficient (α) vs temperature (T) for the system Nd(Cr_{1-x}Fe_x)O₃. Arrow indicates T_R.

into Eq. (3), *n* is easily calculated from α and *N*. The electrical conductivity (σ) is given by

$$\sigma = n e \mu, \tag{5}$$

where μ is the mobility. Since there are four sites in the orthorhombic perovskite-type unit cell, N is expressed as N = 4/V. The compositional increase of V at room temperature is small ($\approx 3.4\%$). Although V at 800 K was not measured, it is expected that V at 800 K is smaller than double V at room temperature and that the compositional increase of V at 800 K is also small. When the value of V at room temperature is used in the calculation, N is almost independent of x. From the variation of α , it is considered that *n* is independent of *x* in the range $0.0 \le x \le 0.6$ and increases with x in the range $0.8 \le x \le 1.0$. The electrical resistivity at 800 K is ≈ 157 for x = 0.0, ≈ 228 for x = 0.2, ≈ 592 for x = 0.4, ≈ 3300 for x = 0.6, ≈ 4560 for x = 0.8, and $\approx 7300 \,\Omega \cdot \mathrm{cm}$ for x = 1.0, respectively. Consequently, μ decreases with x as follows; $\approx 8 \times 10^{-5}$ for x = 0.0, $\approx 6 \times 10^{-5}$ for x = 0.2, $\approx 3 \times 10^{-5}$ for x = 0.4, $\approx 7 \times 10^{-6}$ for x = 0.6, $\approx 1 \times 10^{-6}$ for x = 0.8, and $\approx 2 \times 10^{-7} \text{ cm}^2 \cdot$ $V^{-1} \cdot s^{-1}$ for x = 1.0, respectively.

Figure 7 shows DTA of Nd($Cr_{1-x}Fe_x$)O₃ (0.0 $\le x \le 0.6$) in the temperature range 300 $\le T \le 873$ K. Although TG showed no weight loss or weight in these samples, a broad and very weak exothermic peak was observed in the temperature $573 \le T \le 780$ K. The endothermic or exothermic peak due to the phase transition is usually sharp (17). Therefore, it is considered that the broad exothermic peak in Fig. 7 does not come from the phase transition, but the oxygen deficiency of the samples or the variation of the spin state of the Cr ion. However, the Cr³⁺ ion (3d³) has only one electron configuration, $(d\varepsilon)^3(d\gamma)^0$. If there is a very small oxygen deficiency that is under the detection limits of TG,

FIG. 7. DTA curves for the system $Nd(Cr_{1-x}Fe_x)O_3$.

a very small quantity of Cr^{2+} ions exist in the samples at high temperature. μ_{eff} calculated above T_M is larger than μ_{eff} calculated below T_M ; μ_{eff} above T_M is $\approx 5.85 \ \mu_B$ for x = 0.0, $\approx 5.92 \ \mu_B$ for x = 0.2, and $\approx 5.91 \ \mu_B$ for x = 0.4, respectively. It is obvious that the theoretical μ_{eff} with the high-spin state of the Cr^{2+} is larger than the theoretical μ_{eff} with the low-spin state of the Cr^{2+} ion. The increase of μ_{eff} above T_M is explained by the appearance of the small quantity of the Cr^{2+} ion. As seen in Fig. 5, E_a calculated above T_R is smaller than E_a calculated below T_R . It is obvious that the electrical resistivity is strongly influenced by the appearance of the Cr^{2+} ion.

Since the (Cr, Fe)O₆ octahedron in Nd($Cr_{1-x}Fe_x$)O₃ connects with O(1) or O(2) of the neighboring (Cr, Fe)O₆ octahedron, there are two kinds of the cation-anion-cation overlap; one is an overlap (π -bonding) between the cation $d\varepsilon$ and oxygen p_{π} orbitals, and the other is the overlap (σ bonding) between the cation $d\gamma$ and oxygen p_{σ} orbitals. According to Goodenough, three 3d electrons of the Cr³⁺ ion in LaCrO₃ are all localized and the Fermi level lies between the t_{2g}^* and narrow e_g^* levels (18). It is considered that NdCrO₃ has a same band structure as LaCrO₃ has; that is, both the localized t_{2g}^* and narrow e_g^* levels coexist and the intra-atomic exchange (Δ_{ex}) between the $t_{2g}^* - \alpha$ and $t_{2g}^*-\beta$ levels is larger than the crystal-field splitting (10Dq) between the t_{2g}^* and e_g^* levels. With increasing x in $Nd(Cr_{1-x}Fe_x)O_3$, both the increase of the (Cr, Fe)–O distance and the decrease of the angles for (Cr, Fe)-O(1 and 2)–(Cr, Fe) make π -bonding decrease. Therefore, the cation-anion-cation overlap integrals (Δ_{cac}^{π} for π -bonding and Δ_{cac}^{σ} for σ -bonding) are smaller than the critical overlap integral (Δ_c); $\Delta_{cac}^{\pi} < \Delta_{cac}^{\sigma} < \Delta_c$ (19). Although the 3*d* electrons increases and exist in both the t_{2g}^* and e_g^* levels with increasing x, both the t_{2g}^* and e_g^* levels are localized and 10Dq increases, and so the mobility (μ) decreases and the electrical resistivity (ρ) increases as seen in Fig. 4. It is considered that a very small quantity of the Cr²⁺ ion forms other t_{2g}^* and e_g^* levels. 10Dq due to the Cr²⁺ ion is smaller than that due to the Cr³⁺ and Fe³⁺ ions, and the t_{2g}^* level of the Cr^{2+} ion is above the t_{2g}^* level of the Cr^{3+} and Fe^{3+} ions. Consequently, E_a becomes small above T_R as seen in Fig. 5.

CONCLUSION

The relationship between the crystal structure and the electrical properties of Nd(Cr_{1-x}Fe_x)O₃ was investigated from Rietveld analysis, the electrical resistivity, and Seebeck coefficient measurement. The increase of the (Cr, Fe)–O distance and μ_{eff} indicates that the Fe³⁺ ion in Nd(Cr_{1-x}Fe_x)O₃ is in the high-spin state with the $(d\epsilon)^3(d\gamma)^2$ configuration. The log ρ –1000/T curves indicate that Nd(Cr_{1-x}Fe_x)O₃ is semiconductive with E_a of $\approx 0.16-\approx 0.89$ eV. The Seebeck coefficient is almost independent of

temperature indicating that the mobility decreases with increasing x. The increase of the (Cr, Fe)–O distance and the decrease in the angles for (Cr, Fe)–O(1 and 2)–(Cr, Fe) make π -bonding decrease.

ACKNOWLEDGMENT

The author expresses his thanks to Dr. H. Kido, Osaka Municipal Technical Institute, for the magnetic measurements.

REFERENCES

- 1. T. Arakawa, S. Tsuchi-Ya, and J. Shiokawa, *Mater. Res. Bull.* 16, 97 (1981).
- J. B. Goodenough and J. M. Longo, *in* "Landolt–Bornstein, Numerical Data and Functional Relationships in Science and Technology. New Series, Group 3, Vol. 4, Magnetic and Other Properties of Oxides and Related Compounds" (K. H. Hellwege, Ed.), p. 228. Springer-Verlag, New York, 1971.
- H. Taguchi, M. Nagao, and Y. Takeda, J. Solid State Chem. 114, 236 (1995).

- G. V. S. Rao, B. M. Wanklyn, and C. N. R. Rao, J. Phys. Chem. Solids 32, 345 (1971).
- 5. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).
- 6. W. Gordy, and J. O. Thomas, J. Chem. Phys. 24, 439 (1956).
- 7. H. Taguchi, J. Solid State Chem. 118, 367 (1995).
- 8. H. Taguchi, J. Solid State Chem. 122, 297 (1996).
- W. C. Koehler, E. O. Wollan, and M. K. Wilkinson, *Phys. Rev.* 118, 58 (1960).
- M. Eibschütz, G. Gorodetsky, S. Shtrikman, and D. Treves, J. Appl. Phys. 35, 1071 (1964).
- 11. F. Izumi, Nippon Kesho Gakkaishi 27, 23 (1985). [In Japanese]
- 12. R. D. Shannon, and C. T. Prewitt, Acta Crystallogr. Sect. B 25, 925 (1969).
- K. R. Poeppelmeier, M. E. Leonowicz, J. C. Scanlon, and W. B. Yelon, J. Solid State Chem. 45, 71 (1982).
- 14. A. J. Dekker, "Solid State Physics," p. 450. Prentice-Hall, New York 1970.
- 15. J. H. Perlstein and M. J. Sienko, J. Chem. Phys. 48, 174 (1968).
- 16. H. L. Tuller, and A. S. Nowick, J. Phys. Chem. Solids 38, 859 (1977).
- H. Taguchi, M. Nagao, T. Sato, and M. Shimada, J. Solid State Chem. 78, 312 (1989).
- 18. J. B. Goodenough, J. Appl. Phys. 37, 1415 (1966).
- 19. J. B. Goodenough, Czech. J. Phys. B 17, 304 (1967).